If we want carbon capture to work, we urgently need to value putting carbon back in the ground – or crazy stuff like this happens…

There’s a lot of excitement, a lot of hype, and a lot of money floating around to do interesting things with renewable power, carbon, and especially hydrogen. And I think it’s sending some project developers a little crazy. Here’s an example:

‘HydrogenInsight’ recently published an interview with Thomas Zirngibl of Koppo Energia Oy, a Finnish company (link below). Thomas seems like a nice enough chap, and admittedly, he recognises that what they’re doing is a bit crazy – the headline is, ‘This is why we’re producing e-methane from green hydrogen, even though it’s so inefficient’. Having read what he’s planning, I think someone needs to explain to Thomas the difference between ‘inefficient’ and ‘worse than pointless’. See what you think.

Koppo Energia will build a large green hydrogen production facility on Finland’s west coast, with a 200MW electrolyser powered by 500MW of offshore wind and 100MW of solar. But, they need a market for all that hydrogen, which means moving it. In future, conversion to ammonia would make sense, but there are no buyers yet. So, they’re going to combine it with captured CO2 trucked in from another plant, make e-methane, then liquefy that methane and truck it down to Germany to fuel LNG-powered trucks.

Just think about that for a moment… The starting point is that a plant has captured the CO2 it emits. Energy is then used to truck those carbon atoms to a second plant. More energy is used to purify water, more to electrolyse that water to hydrogen, more still to combine that hydrogen with the carbon, even more to liquefy the resulting methane, and a final amount to truck that methane to Germany, where it is burned in the engine of a truck – turning it back into CO2 which is released to the atmosphere.

The outcome of this whole process in carbon terms is exactly the same as if the CO2 captured at the original plant in Finland was simply injected into an oil well or sequestered in some other way. That sequestration would achieve exactly the same CO2 reduction as using those carbon atoms to replace German truck fuel, and I would be willing to bet at far less cost?

Plus, you could do something else with all that wind and solar power, and the money you invested in the electrolyser. If you want a load of kit, you could invest in another Direct Air Capture plant like the one in Iceland, and use all that power to lock up even more CO2 from the atmosphere directly – OK it’s not very efficient either, but again, probably makes more sense than what Thomas is planning, and would certainly mitigate more CO2 overall.

 On reading about this plan, the question has to be, how did we arrive at a point where anyone would think this is a plan worth spending money on? I assume some pretty detailed financial modelling has been done, and the investors aren’t stupid, so this scheme suggests a couple of things are going on.

Firstly, it seems likely that the current systems of grants and subsidies in Finland and Germany are overly eager to promote hydrogen and/or recycled carbon fuels, and are being ‘gamed’. That sort of market distortion is not uncommon where multiple stakeholders are finding different mechanisms to promote new technologies.

Second, and more importantly to my mind, the Finnish plant at the start of the process is apparently unable to get a decent price to bury its CO2 emissions. With all the talk of carbon sequestration in the context of BECCS and ‘Blue Hydrogen’, it does not bode well to see an example of a plant that has gone to the trouble of capturing its CO2, but isn’t taking the simplest route to put those carbon atoms back in the ground.

BECCS – BioEnergy with Carbon Capture and Storage

https://www.hydrogeninsight.com/transport/interview-this-is-why-were-producing-e-methane-from-green-hydrogen-even-though-its-so-inefficient/2-1-1495170

What are the implications if ‘white hydrogen’ isn’t a white elephant?

So you’ve probably heard of grey, blue and green hydrogen – I won’t explain here, if you haven’t then google it and then come back. But as of the last few days, you may also have heard of ‘white’ hydrogen (also sometimes called ‘gold’ hydrogen). I first came across the idea earlier this year, and I’ve been meaning to write about it, but this week it hit the mainstream with a piece in the Telegraph.

White hydrogen is hydrogen that forms naturally in the rocks under our feet, like oil (although by a different process, and in different rocks). And some reliable sources (like the US Geological Survey) have estimated that there may be a lot more of it than anyone had previously guessed – enough to entirely replace the fossil fuel industry with hydrogen that we can extract at about the same cost as those same fossil fuels.

If you’re like me, and most other commentators, your immediate reaction is, that sounds too good to be true, because surely we couldn’t have missed something that big? Right? Well, I’ve linked to some other sources below, but to summarise:

  • People have noticed seepages of hydrogen from rocks all over the world for a long time. The same was true of oil for hundreds of years before anyone thought of developing it.
  • Hydrogen forms in completely different rocks to oil, so we haven’t looked in the right places at all.
  • People prospecting for oil (and other things) just haven’t been testing for hydrogen.

So, it is possible that vast reservoirs of naturally occurring hydrogen exist under our feet and haven’t been found. Surprisingly little of the earth has been comprehensively geologically mapped.

One key thing about white hydrogen is that it is continuously being formed, mainly by water reacting with certain types of rock. That means that if/when a reservoir is tapped, it may well keep producing forever, as unlike oil the hydrogen is continuously replenished. In fact there is the tantalising prospect of a win-win-win – pumping water and carbon dioxide down a hydrogen well, where the CO2 reacts to form rock, some of the water creates fresh hydrogen, and the rest of the water is heated. The heated water and hydrogen then circulate back up, providing geothermal and hydrogen energy.

Of course it’s impossible to know at this point how much H2 might be economically recoverable, and how long this industry might take to develop. But there is the chance it could happen quite quickly – after all, we have a load of highly capitalised global companies specialised in this type of thing, that we’re currently telling to abandon their primary product.

What would be the implications is we could suddenly produce as much hydrogen as we could use, at a cost per unit of energy comparable to oil? A major worry is that even considering that question might lead to a stalling of current efforts to decarbonise using existing technology. However, I think that’s unlikely – even if we find huge amounts of white hydrogen, it will still mainly dovetail with wider efforts at electrification, we’ll just have more fuel cells and fewer batteries.

The fuel cell industry will be a massive winner, as the economics of fuel cells vs bigger batteries will win out for more vehicles. Efforts to decarbonise current industry with hydrogen will get a huge boost – primarily fertiliser, but also steel and chemicals. And it will make decarbonising shipping with ammonia as a fuel far more attractive. Electrolysis may be a big loser, but then again maybe not – hydrogen will still be hard to transport, and if the use of hydrogen becomes far more widespread, then there may well be interest in producing it by electrolysis in locations further from hydrogen wells.

Then of course we have to consider the possibility of leaks, and whether hydrogen is itself a pollutant? Hydrogen is not itself a greenhouse gas, and it doesn’t last long in the atmosphere, but it does increase climate heating by prolonging the life of methane in the atmosphere, and its effects on ozone. However, some useful work has been done on this by the UK government, which concluded that since some hydrogen is created by the burning of fossil fuels anyway, the amount likely to leak in a hydrogen economy would be less than the reduction in hydrogen from the fossil fuels we would have burned instead. Still, leaks would need to be closely regulated from day one if drilling for hydrogen takes off.

Overall, this may sound a little far fetched, but I think it’s something that everyone in the transport and energy space needs to keep a close eye on. It’s just possible that ten years from now the energy economy could look very different from any of the current predictions.

https://www.science.org/content/article/hidden-hydrogen-earth-may-hold-vast-stores-renewable-carbon-free-fuel

https://www.usgs.gov/news/technical-announcement/less-one-percent-united-states-covered-aeromagnetic-data-meet-modern

https://www.businesstimes.com.sg/opinion-features/columns/could-white-hydrogen-change-everything-shipping-and-everybody-else