If we want carbon capture to work, we urgently need to value putting carbon back in the ground – or crazy stuff like this happens…

There’s a lot of excitement, a lot of hype, and a lot of money floating around to do interesting things with renewable power, carbon, and especially hydrogen. And I think it’s sending some project developers a little crazy. Here’s an example:

‘HydrogenInsight’ recently published an interview with Thomas Zirngibl of Koppo Energia Oy, a Finnish company (link below). Thomas seems like a nice enough chap, and admittedly, he recognises that what they’re doing is a bit crazy – the headline is, ‘This is why we’re producing e-methane from green hydrogen, even though it’s so inefficient’. Having read what he’s planning, I think someone needs to explain to Thomas the difference between ‘inefficient’ and ‘worse than pointless’. See what you think.

Koppo Energia will build a large green hydrogen production facility on Finland’s west coast, with a 200MW electrolyser powered by 500MW of offshore wind and 100MW of solar. But, they need a market for all that hydrogen, which means moving it. In future, conversion to ammonia would make sense, but there are no buyers yet. So, they’re going to combine it with captured CO2 trucked in from another plant, make e-methane, then liquefy that methane and truck it down to Germany to fuel LNG-powered trucks.

Just think about that for a moment… The starting point is that a plant has captured the CO2 it emits. Energy is then used to truck those carbon atoms to a second plant. More energy is used to purify water, more to electrolyse that water to hydrogen, more still to combine that hydrogen with the carbon, even more to liquefy the resulting methane, and a final amount to truck that methane to Germany, where it is burned in the engine of a truck – turning it back into CO2 which is released to the atmosphere.

The outcome of this whole process in carbon terms is exactly the same as if the CO2 captured at the original plant in Finland was simply injected into an oil well or sequestered in some other way. That sequestration would achieve exactly the same CO2 reduction as using those carbon atoms to replace German truck fuel, and I would be willing to bet at far less cost?

Plus, you could do something else with all that wind and solar power, and the money you invested in the electrolyser. If you want a load of kit, you could invest in another Direct Air Capture plant like the one in Iceland, and use all that power to lock up even more CO2 from the atmosphere directly – OK it’s not very efficient either, but again, probably makes more sense than what Thomas is planning, and would certainly mitigate more CO2 overall.

 On reading about this plan, the question has to be, how did we arrive at a point where anyone would think this is a plan worth spending money on? I assume some pretty detailed financial modelling has been done, and the investors aren’t stupid, so this scheme suggests a couple of things are going on.

Firstly, it seems likely that the current systems of grants and subsidies in Finland and Germany are overly eager to promote hydrogen and/or recycled carbon fuels, and are being ‘gamed’. That sort of market distortion is not uncommon where multiple stakeholders are finding different mechanisms to promote new technologies.

Second, and more importantly to my mind, the Finnish plant at the start of the process is apparently unable to get a decent price to bury its CO2 emissions. With all the talk of carbon sequestration in the context of BECCS and ‘Blue Hydrogen’, it does not bode well to see an example of a plant that has gone to the trouble of capturing its CO2, but isn’t taking the simplest route to put those carbon atoms back in the ground.

BECCS – BioEnergy with Carbon Capture and Storage


Is the electric revolution going to run out of key metals?

For years, whenever I went to an event talking about electric vehicles, there would always be some chap jabbing his finger and saying, “Yes, but where’s all the lithium going to come from, eh?” I’m sure you’ve met the same type of guy (and it is always a man).

It’s a fair question, but the way it was asked tended to undermine the argument. It was always obvious that this was someone desperate for the EV lobby to be proved wrong, so I had to suspect whatever they said was guided by motivated reasoning. History makes the ‘we’re running out’ argument just feel like crying wolf – Limits to Growth never happened, Peak Oil never happened, we’ve been here before surely?

“… the age of electricity and of copper will be short. At the intense rate of production that must come, the copper supply of the world will last hardly a score of years. … Our civilization based on electrical power will dwindle and die.”

Copper mining expert Ira Joralemon, in 1924

Now, however, the argument seems a little harder to dismiss. Every few days I see a new article or report about the coming supply crunch for the various metals needed in EVs (and solar panels, and wind turbines, and everything else electric).

Most recently I saw a presentation using copper as an example – it’s the third most used metal in industry, after iron and aluminium, and of course it’s used in everything electrical. It’s easy to paint a pretty dire picture, using reports from mainstream sources like the International Energy Agency and S&P Global. Inventories are down, we’re having to process ores of steadily lower quality, and new mines take over 10 years from discovery to production.

But again, we have been here before. Wikipeadia points out that in 1924 geologist and copper-mining expert Ira Joralemon warned: “… the age of electricity and of copper will be short. At the intense rate of production that must come, the copper supply of the world will last hardly a score of years. … Our civilization based on electrical power will dwindle and die.”

So what are we to conclude? Without pretending to be a minerals expert, here’s what I think we need to take away:

First, in the long term, metal shortages won’t stop the move towards electrification of society. We’ll find new metal deposits (astonishingly I just read that only 40% of US territory has been geologically mapped in detail). We’ll make more of our wiring out of aluminium, we’ll commercialise different battery chemistries. We’ll do things that nobody has thought of as yet.

Second, in the short term, prices will go up. It’s fair to say that we’ve left tackling climate change to the eleventh hour, and so we have ridiculously steep targets to reduce emissions. Transforming our energy system in a matter of just a decade is going to bump up against the timelines to build new mines or take a new type of battery from the university lab to the car showroom. We’re already seeing battery prices increase after decades of falling.

Third, we (obviously) need to be as efficient as possible in our use of energy and resources – and those high prices will help force this. In the case of transport, it means that SUVs are still a bad idea, even if they’re fully electric. We may want to re-examine the case for plug-in hybrids vs fully electric – more on that in a future post. And we will need diverse strategies – a variety of low carbon liquid fuels, travel demand management, modal shift, i.e. every tool in the box.

Finally, there will be winners and losers, and we are probably right to worry about the destabilising effect of that on global politics. It’s true that China currently processes a huge proportion of many of the key metals. It is unfortunate that this supply deficit is looming just as governments around the world are backing off from globalisation and returning to national interest and protectionism.

It is worrying that in pushing for domestic resource extraction, the US and Europe may well prioritise this strategic interest over nature, indigenous communities and clean air and water. And in countries with less stable institutions, concentrated mineral wealth historically does more harm than good, propping up corrupt and authoritarian regimes.

To end on a slightly more optimistic note, our response to the pandemic has proved that technological developments that used to take 10 years can happen in two, if there’s the will. Let’s hope that applies to new types of battery, motor or mining techniques as well as vaccines.