If we want carbon capture to work, we urgently need to value putting carbon back in the ground – or crazy stuff like this happens…

There’s a lot of excitement, a lot of hype, and a lot of money floating around to do interesting things with renewable power, carbon, and especially hydrogen. And I think it’s sending some project developers a little crazy. Here’s an example:

‘HydrogenInsight’ recently published an interview with Thomas Zirngibl of Koppo Energia Oy, a Finnish company (link below). Thomas seems like a nice enough chap, and admittedly, he recognises that what they’re doing is a bit crazy – the headline is, ‘This is why we’re producing e-methane from green hydrogen, even though it’s so inefficient’. Having read what he’s planning, I think someone needs to explain to Thomas the difference between ‘inefficient’ and ‘worse than pointless’. See what you think.

Koppo Energia will build a large green hydrogen production facility on Finland’s west coast, with a 200MW electrolyser powered by 500MW of offshore wind and 100MW of solar. But, they need a market for all that hydrogen, which means moving it. In future, conversion to ammonia would make sense, but there are no buyers yet. So, they’re going to combine it with captured CO2 trucked in from another plant, make e-methane, then liquefy that methane and truck it down to Germany to fuel LNG-powered trucks.

Just think about that for a moment… The starting point is that a plant has captured the CO2 it emits. Energy is then used to truck those carbon atoms to a second plant. More energy is used to purify water, more to electrolyse that water to hydrogen, more still to combine that hydrogen with the carbon, even more to liquefy the resulting methane, and a final amount to truck that methane to Germany, where it is burned in the engine of a truck – turning it back into CO2 which is released to the atmosphere.

The outcome of this whole process in carbon terms is exactly the same as if the CO2 captured at the original plant in Finland was simply injected into an oil well or sequestered in some other way. That sequestration would achieve exactly the same CO2 reduction as using those carbon atoms to replace German truck fuel, and I would be willing to bet at far less cost?

Plus, you could do something else with all that wind and solar power, and the money you invested in the electrolyser. If you want a load of kit, you could invest in another Direct Air Capture plant like the one in Iceland, and use all that power to lock up even more CO2 from the atmosphere directly – OK it’s not very efficient either, but again, probably makes more sense than what Thomas is planning, and would certainly mitigate more CO2 overall.

 On reading about this plan, the question has to be, how did we arrive at a point where anyone would think this is a plan worth spending money on? I assume some pretty detailed financial modelling has been done, and the investors aren’t stupid, so this scheme suggests a couple of things are going on.

Firstly, it seems likely that the current systems of grants and subsidies in Finland and Germany are overly eager to promote hydrogen and/or recycled carbon fuels, and are being ‘gamed’. That sort of market distortion is not uncommon where multiple stakeholders are finding different mechanisms to promote new technologies.

Second, and more importantly to my mind, the Finnish plant at the start of the process is apparently unable to get a decent price to bury its CO2 emissions. With all the talk of carbon sequestration in the context of BECCS and ‘Blue Hydrogen’, it does not bode well to see an example of a plant that has gone to the trouble of capturing its CO2, but isn’t taking the simplest route to put those carbon atoms back in the ground.

BECCS – BioEnergy with Carbon Capture and Storage

https://www.hydrogeninsight.com/transport/interview-this-is-why-were-producing-e-methane-from-green-hydrogen-even-though-its-so-inefficient/2-1-1495170

If we want to keep the EV momentum going, it’s time to make small cars cool again

In the world of EV sales, things are shaping up for a showdown between market forces and, well, common sense.

On the side of common sense, authorities in Paris have declared war on ‘auto-besity’, and are going to introduce parking fees that get progressively higher based on the weight and size of vehicles. Deputy mayor David Belliard said SUVs were incongruous in an urban environment. “There are no dirt paths, no mountain roads … SUVs are absolutely useless in Paris. Worse, they are dangerous, cumbersome and use too many resources to manufacture.”

Unfortunately, the higher charges in Paris won’t apply to electric SUVs. Which is a shame, because the market forces that have pushed ICE vehicles towards SUVs seem to be having an even greater effect on the EV market, where an ever higher proportion of the models on offer are SUVs and ‘crossovers’.

The trend towards heavier vehicles started in the US as a way for manufacturers to avoid stricter air quality regulations that did not apply to ‘light trucks’. But it continues on the logic that big vehicles don’t cost that much more to make than small ones, but consumers will accept a proportionally bigger price mark-up. As manufacturers switch over to EVs, with expensive batteries, it’s easier to lose that extra cost in a big luxury vehicle which has a larger profit margin to start with.

Still – does a trend towards bigger cars matter, if they’re electric? Well, yes, for a lot of reasons, but three in particular – equality, efficiency and liveability.

First, equality. A few years ago I fully expected the switch to EVs to reverse the trend towards SUVs, as the desire for greater range would push consumers towards lighter vehicles. Instead, manufacturers have doubled down on size and found they have more space for giant battery packs, which have come down in price to levels which are ‘affordable’, at least in the higher end of the market. But where does that leave ‘mass market’ adoption?

Big, heavy EVs won’t be cheap for a long time (if ever) because they need lots of batteries. If that’s all that European manufacturers want to make, then one of two things will happen. Either the rollout of EVs will stall, and leave the majority of consumers with no option but to stick with ICEs (and you could be forgiven for thinking this has happened if you read the current backlash in the press). Or, more likely, Chinese companies will fill the void and eat their lunch.

Second, efficiency. We are heading for a 100% renewable grid – but we’re not there yet. And don’t forget, we have to switch most of our heating to electricity, which will need a lot more renewables, and that’s predicted to keep the price of electricity high for years. So if your electric car is twice as heavy as it needs to be, and uses twice as much energy, then the extra power you use is adding to demand and slowing our progress towards getting rid of fossil fuels and bringing prices down. (And don’t forget that it’s also taken more energy to build it.)

Efficiency matters – comparing like-with-like, EVs beat ICE. But as of now, smaller, lighter petrol cars still have a smaller environmental footprint than bigger, heavier EVs.

Finally, liveability. More SUVs make it harder to get people to cycle and walk, because they take up more road space and are more likely to kill people in collisions. And they need bigger parking spaces, accelerating the trend to tarmac over more of our urban space, exacerbating flash flooding and the heat island effect.

So, what’s the answer? I think it’s high time to make small cars cool again. I don’t know what they’ll do in America, where their icons are the Hummer and the F150 pick-up, but we’re European. The re-launch of the Fiat 500 was a great success a few years ago, as was the new Mini (even though it’s admittedly a lot bigger than the old Mini).

Our automotive industry has a great history of making small cars profitable, and cool. The ‘European dream’ if there is one, is zipping from a pavement café to the beach, parking in a space not much bigger than a picnic blanket at either end. Michael Caine didn’t need an SUV to transport his gold bullion, ‘Nicole’ and ‘Papa’ didn’t need to impress with a Chelsea tractor. It’s time for the electric revolution to give us new cars that are small but iconic.

https://www.theguardian.com/world/2023/jul/11/paris-charge-suv-drivers-higher-parking-fees-tackle-auto-besity

https://www.theguardian.com/business/2023/may/04/electric-vehicles-suvs-us-vehicle-fleet

https://www.thisismoney.co.uk/money/bills/article-12275321/Energy-bills-stay-high-15-years-experts-predict.html

How are hydrogen producers going to get their hands on lots of cheap electricity?

First of all, let me make clear that I’m not ‘anti’ hydrogen – I absolutely think we’re going to need it for some applications. For a start, we’ll have to replace all the ‘grey’ hydrogen we currently use to make fertilisers, and we’ll probably need a lot of hydrogen for steel-making. In applications like that, where there is not really any other zero carbon choice, the question is not whether to use non-grey hydrogen, but how best to do it.

So my question about hydrogen is really about using it where there are competing options – such as in vehicles. Where does the line get drawn between turning electricity into hydrogen and then back into electricity, vs just using the electricity? Physics says that the hydrogen option is always going to need a minimum of twice as much energy compared to using the electrons directly, so for hydrogen to compete, it has to use electricity that is half the usual price, or less.

As far as I can see, there are two possible options for finding cheap renewable electricity to make hydrogen – either ‘when’ or ‘where’. The ‘when’ option is to use curtailed renewables – wind power generated in the middle of the night for example. And the ‘where’ option is to hook up an electrolyser to a wind turbine out at sea or a solar farm in the Australian outback (rather than lay a cable).

Let’s look at the when option first (I’ll tackle ‘where’ in the next post). At the moment, in the UK, if the wind is blowing in the middle of the night, some wind farms get paid to switch off rather than damage the grid, so the electricity price is effectively negative. I can see why people get excited about hydrogen when looking at this. However, I had a client who asked me to assess the feasibility of producing hydrogen from curtailed power, and for now the numbers don’t stack up. The problem is that electrolysers are a big up front cost, so an operator needs to run them continuously in order to generate a return on investment – only running them when there’s excess electricity on the grid is not good enough for investors.

Even if the price of electrolysers falls significantly, my guess is there won’t be enough curtailed power to supply them, for two reasons. One, we are rapidly moving towards a smart grid in which consumers and energy companies collaborate to match demand to supply. And two, we are seeing exponential growth in electric vehicles, which will be left on overnight to be charged at the discretion of the smart grid whenever power is cheapest. Effectively, all those EV batteries will be soaking up the cheap electricity leaving none to make hydrogen.

I would really welcome comments on the above from anyone who has more detailed modelling of the UK electricity grid. My thoughts are purely qualitative, so maybe the scale of renewables we need to meet peak demand is such that we’ll have a huge amount of curtailed power even with EVs and a smart grid. But my suspicion is that the market will match the two, and not leave much for hydrogen production. So what about the where option? That’s for my next post…